
Selected basic tools of soil hydrology written in Octave/Matlab

In general, compiled computer programs run fast and provide detailed and versatile output. Their 
disadvantage is, that users cannot easily get insight into the functionality of the code. Moreover, it is 
difficult to modify programs according to special needs of users. Programs written in Octave – Octave 
is a subset of Matlab – don’t need to be compiled beforehand, are visible in every detail and may be 
customized if necessary. The algorithms of such a code are easy to include into larger and complex 
programs. Already in former times similar programming tools have been a challenge to treat soil 
physical problems. For instance, Campbell entitled his book “Soil Physics With Basic” - Basic was a 
simple programming language in the mid- 20th -century. 
As a few samples, we present five small programs, whose names are derived from the main author 
names of the underlying theory.

1. Haverkamp’s set of equations for ponded one-dimensional infiltration in a newer version.
             Program name: “Haverkamp”

2. Discharge of water from a saturated soil column in contact with groundwater table (“internal 
drainage”). Name: “Gardner”

3. Discharge of water from a saturated soil column subject to a unit gradient on its bottom 
boundary. Name: “Sisson”

4. Groundwater recharge dependent on soil, climate, depth to groundwater, rooting depth,  and 
rain distribution. Name: “Bagrov”.

5. Parameter optimization of an arbitrary nonlinear function (up to 4 unknown parameters). 
Name: “Fibonacci”

The codes are written in Octave, running under Ubuntu Linux and are checked as best as we could. 
Since everything is open to inspection, remaining errors can be detected by the user. The problems one 
to four are part of the “SHEEP” program on this website and are explained in the description of that 
program. Since the output is given numerically, it is up to the user to make arrangements for plotting 
the results. Octave itself provides tools for graphical representation, which are similar to GNUPLOT.   

Program “Haverkamp”: Ponded infiltration
In 2013, Lassabatere et al. published a new version of Haverkamps infiltration formula. Only unimodal 
water retention characteristics are considered here. Latorre et al. published in 2018 an investigation on 
the beta-parameter of that formula.  The code presented here is based on both of these publications. 
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with
q0    initial soil water content
K   hydraulic conductivity, D diffusivity
K0=K(q0 )
DK=Ksurface-K0

This equation requires an implicit calculation of cumulative infiltration I.
Sorptivity S is given by 

S ²= ∫
θ0

θ surface

(θ+θsurf−2θ0) D(θ)dθ (2)

To calculate D and K, the Mualem-vanGenuchten model was assumed:
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Program “Gardner”: Internal drainage
Above groundwater table, a soil column of length L which is initially saturated will approach an 
equilibrium where the hydraulic gradient vanishes and soil water storage is given by

W ∞=∫
o

L

θ(h( z)) dz (5)

z  vertical coordinate, h soil water pressure head, q soil water content

In this state, the discharge will be

Q∞=θs L−W ∞ (6)

Gardner published in 1962 a solution to the discharge at time t which reads
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Since in this equation diffusivity D c is a constant,  Crank’s method to obtain an effective diffusivity is used:

DC=
1. 85

(θ i−θ f ) 1.85∫D(θ ) (θi−θ ) 0. 85dθ (8)

Because the final water content q at time t is unknown, an iteration scheme is necessary.
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Program “Sisson”: Unit-gradient discharge from soil

Beneath the soil depth where soil water is available to evapotranspiration and in sufficient large 
distance to groundwater table the average hydraulic gradient in soil is close to unity. This will cause 
drainage of soil water with decreasing intensity according to the decreasing of hydraulic conductivity K
with decreasing water content q. To calculate q(t), an equation proposed by Sisson et al.(1980) may be 
employed:
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where t is drainage time and z depth beneath the upper boundary. For the vanGenuchtem/Mualem 
model of hydraulic properties, the derivative of K with respect to θ is given by 
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with

Q=1−S(1/m)
(11)

S is the effective saturation S=(q-qr)/(qs-qr)
To make calculations convenient, Equ. (10) was rearranged. 
From Equs.(9 and 10) the water content θ may be calculated implicitly. Integration of  θ yields water 
storage in soil.
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Program “Bagrov”: Groundwater recharge dependent on soil, climate, depth to 
groundwater, rooting depth,  and rain distribution.

Water balance
Without fast surface runoff, long-term groundwater recharge R is given by

R = P – Ea (12)
P average annual precipitation, cm
Ea  average annual average evapotranspiration, cm

Under conditions of hydrologic equilibrium, i.e. P-Ea-R=0, actual evapotranspiration 
may be calculated implicitly by the Bagrov equation (Glugla et al.1971) given by
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where Ep denotes potential evapotranspiration. Under wet conditions, Ea/Ep is close to 
one and the right side of Equ.(2) approaches zero. In this case, actual evapotranspiration 
does not depend on precipitation. In contrast, under very dry conditions, Ea/Ep is very 
small and the right hand side of Equ.(2) approaches one. Thus, any change of 
precipitation yields the same change of actual evapotranspiration or, in other words, the 
entire precipitation falls prey to evapotranspiration.

 Rearranging Equ.(2) leads to
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which may be used to calculate Ea. 

Estimation of Bagrov coefficient b
 The parameter b considers i) the amount of soil water (including capillary rise) 
available for evapotranspiration and ii) the simultaneity of energy supply and 
precipitation.
 Site conditions are specified by climate, soil hydraulic properties and  depth to 
groundwater.  For a range of different soil and climatic conditions, the soil water balance
was simulated by the comprehensive numerical model SWAP and an empirical hydro-
pedotransfer function was established to estimate the exponent b of Equ.(2) (Miegel et 
al., 2013). It is given by 

b=c1W a
c2+ c3(exp(c4q)−1)  (15)

Plant available water supply
It is assumed that soil water supply to crops comprises the plant available water of the 
root zone and the steady-state flow of water from the groundwater table upward to the 
bottom of the root zone.  The first term can be approximated by 

W a=d∗(θ(h fc)−θ(hPWP)) (16)
Wa plant-available soil water, cm
d depth of the root zone,cm
q volumetric soil water content 
h  soil water pessure head h, positively taken
fc, pwp field capacity and permanent wilting point, respectively

For soil water retention the vanGenuchten (1980) model is used: 



θ(h)=θr+
θs−θr

(1+ (α h)n)(1−1/ n) (17)

where all the items except θ and h are parameters to characterize soil hydraulic 
properties.

Influence of groundwater table
The so-called capillary rise, i.e. the staedy-state flow from the groundwater to the 
bottom of the root zone is given by the Darcy equation

q=−K (h)( dhpdz + 1) (18)

q flow rate through soil, cm3cm-2d-1 
K(h) soil hydraulic conductivity, cm/d, as function of soil water pressure head h
hp=-h
z vertical space coordinate, cm, upward positive

Separation of variables yields with h=-hp

dz= dh
q

K (h)
+ 1

(19)

According to the Mualem/van Genuchten model (vanGenuchten, 1980)  K(h) is given by
 

K (h)=K s
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K(h) soil hydraulic conductivity
Ks saturated soil hydraullic conductivity
τ tortuosity parameter

Because of the rather sophisticated form of Equ.(9) the differential equation (8) must be 
solved numerically.

The final equation is given by GWR=P−E a



Limitations of the Bagrov method

There are two different conditions where the Bagrov method fails. 
(A) Because of the underlying assumption that infiltrated soil water be available to
evapotranspiration, the method requires the residence time of infiltrated water in soil to
be sufficient to make water available to evapotranspiration.
 (B) The second limitation holds for plains under dry climatic conditions where the
aquifer is recharged by groundwater inflow from regions with precipitation excess.
Since the Bagrov equation restricts actual evapotranspiration to precipitation, it may
not be used for wetlands where Ea is enhanced by capillary rise from the groundwater
table so much that it might exceed the local precipitation leading to groundwater
depletion. To cope with condition (B), the FORTRAN-based   computer program given
here uses a statistic-based prediction equation instead of the Bagrov relation. For
details, users are referred to Miegel et al.(2013). 
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Program “Fibonacci”: Parameter optimization of an arbitrary nonlinear function
Many highly sophisticated tools are available to fit nonlinear equations to measured data. Sometimes a
simple and robust tool is needed to fit equations without using the Excel solver or MatCad or gnuplot 
or RETC in case of water retention data. The program presented here is based upon certain numbers 
mentioned already by Leonardo da Pisa (called Fibonacci) in 1202. The method assumes, that the 
objective function, measuring the goodness of fit, has no more then one minimum within a current 
search interval. Based on this assumption, we can conclude, that the minimum cannot lie outside the 
search border attributed with the larger error. In this way it is possible to scale down the search 
interval step by step.

The program presented here requires knowledge of reasonable initial estimates. If the position of the 
global error minimum is very obscure, a Monte-Carlo search step should be performed beforehand. 
This is not included in the Octave file but incorporated in the FORTRAN version on this website.
The program comes with an example and test data, that is the van Genuchten water retention function.



The test data are generated by the vanGenuchten function using assumed parameters. If the program 
runs correct, the estimated parameters should be very close to the assumed ones. Users may try any 
other function of their demand.
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